La industria siderúrgica venezolana se administra mediante la gestión del Estado a través de la planta de la empresa Siderúrgica del Orinoco (SIDOR), localizada en el Nordeste del estado Bolívar. De titularidad privada es la compañía Siderúrgica Venezolana (SIVENSA), en el Distrito Federal y en el estado Bolívar, así como también la Siderúrgica del Turbio (SIDETUR), ésta en el estado Lara.
La producción de acero comenzó en Venezuela en 1950, cuando la empresa SIVENSA la iniciara partiendo de la chatarra. La actividad económica de mayor importancia en el nordeste del estado Bolívar se relaciona con la explotación del mineral de hierro; bajo el impulso de esta actividad surgió Ciudad Piar. De igual forma, la pujante importancia de esta actividad requirió de un puerto para el comercio internacional, el cual se estableció el 8 de febrero de 1952 en la confluencia de los ríos Orinoco y Caroní, con el nombre de Puerto Ordaz, que junto con el de San Félix dieron origen posteriormente a Ciudad Guayana. En fechas más recientes, en 1964, la empresa SIDOR comenzó su producción.
A partir de 1975, el Estado asumió la propiedad de la industria del hierro a través de la Corporación Venezolana de Guayana (CVG), a la cual se adscribió la empresa estatal Ferrominera del Orinoco que reemplazó a las concesionarias que hasta entonces venían controlando la explotación y la comercialización del mineral de hierro.
El acero es el más popular de las aleaciones, es la combinación entre un metal (el hierro) y un no metal (el carbono), que conserva las características metálicas del primero, pero con propiedades notablemente mejoradas gracias a la adición del segundo y de otros elementos metálicos y no metálicos. De tal forma no se debe confundir el hierro con el acero, dado que el hierro es un metal en estado puro al que se le mejoran sus propiedades físico-químicas con la adición de carbono y demás elementos. La definición anterior, sin embargo, se circunscribe a los aceros al carbono en los que este último es el único aleante o los demás presentes lo están en cantidades muy pequeñas. De hecho existen multitud de tipos de acero con composiciones muy diversas que reciben denominaciones específicas en virtud, ya sea de loselementos qu predominan en su composición (aceros alsilicio), de su susceptibilidad a ciertos tratamientos (aceros de cementación), de alguna característica potenciada (aceros inoxidables) e incluso en función de su uso (aceros estructurales). Usualmente estas aleaciones de hierro se engloban bajo la denominación genérica de aceros especiales, razón por la que aquí se ha adoptado la definición de los comunes o "al carbono" que además de ser los primeros fabricados y los más empleados, sirvieron de base para los demás. Esta gran variedad de aceros llevó a Siemens a definir el acero como «un compuesto de hierro y otra sustancia que incrementa su resistencia». Por la variedad ya apuntada y por su disponibilidad —sus dos elementos primordiales abundan en la naturaleza facilitando su producción en cantidades industriales los aceros son las aleaciones más utilizadas en la construcción de maquinaria, herramientas, edificios y obras públicas, habiendo contribuido al alto nivel de desarrollo tecnológico de las sociedades industrializadas. Sin embargo, en ciertos sectores, como la construcción aeronáutica, el acero apenas se utiliza debido a que es un material muy denso, casi tres veces más denso que elaluminio (7.850 kg/m³ de densidad frente a los 2.700 kg/m³ del aluminio).
Entre sus Características Principales
Posee una alta conductividad eléctrica.
La corrosión es la mayor desventaja de los aceros ya que el hierro se oxida con suma facilidad incrementando su volumen y provocando grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. Tradicionalmente los aceros se han venido protegiendo mediante ratamientos superficiales diversos. Si bien existen aleaciones con resistencia a la corrosión mejorada como los aceros de construcción «corten» aptos para intemperie (en ciertos ambientes) o los aceros inoxidables.
Se utiliza para la fabricación de imanes permanentes artificiales, ya que una pieza de acero imantada no pierde su imantación si no se la calienta hasta cierta temperatura. La magnetización artificial se hace por contacto, inducción o mediante procedimientos eléctricos.
Un aumento de la temperatura en un elemento de acero provoca un aumento en la longitud del mismo.
Su Clasificacion se basa en los diferentes tipos de acero los cuales se agrupan en cinco clases principales: aceros al carbono, aceros aleados, aceros de baja aleación ultra resistentes, aceros inoxidables y aceros de herramientas.
Aceros al carbono
Más del 90% de todos los aceros son aceros al carbono. Estos aceros contienen diversas cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de silicio y el 0,60% de cobre.
Entre los productos fabricados con aceros al carbono figuran máquinas, carrocerías de automóvil, la mayor parte de las estructuras de construcción de acero, cascos de buques, somieres y horquillas o pasadores para el pelo.
Aceros aleados
Estos aceros contienen una proporción determinada de vanadio, molibdeno y otros elementos, además de cantidades mayores de manganeso, silicio y cobre que los aceros al carbono normales.
Estos aceros se emplean, por ejemplo, para fabricar engranajes y ejes de motores, patines o cuchillos de corte.
Aceros de baja aleación ultra resistentes
Esta familia es la más reciente de las cinco grandes clases de acero. Los aceros de baja aleación son más baratos que los aceros aleados convencionales ya que contienen cantidades menores de los costosos elementos de aleación.
Sin embargo, reciben un tratamiento especial que les da una resistencia mucho mayor que la del acero al carbono. Por ejemplo, los vagones de mercancías fabricados con aceros de baja aleación pueden transportar cargas más grandes porque sus paredes son más delgadas que lo que sería necesario en caso de emplear acero al carbono.
Además, como los vagones de acero de baja aleación pesan menos, las cargas pueden ser más pesadas. En la actualidad se construyen muchos edificios con estructuras de aceros de baja aleación.
Las vigas pueden ser más delgadas sin disminuir su resistencia, logrando un mayor espacio interior en los edificios.
Aceros inoxidables
Los aceros inoxidables contienen cromo, níquel y otros elementos de aleación, que los mantienen brillantes y resistentes a la herrumbre y oxidación a pesar de la acción de la humedad o de ácidos y gases corrosivos. Algunos aceros inoxidables son muy duros; otros son muy resistentes y mantienen esa resistencia durante largos periodos a temperaturas extremas.
Debido a sus superficies brillantes, en arquitectura se emplean muchas veces con fines decorativos. El acero inoxidable se utiliza para las tuberías y tanques de refinerías de petróleo o plantas químicas, para los fuselajes de los aviones o para cápsulas espaciales.
También se usa para fabricar instrumentos y equipos quirúrgicos, o para fijar o sustituir huesos rotos, ya que resiste a la acción de los fluidos corporales. En cocinas y zonas de preparación de alimentos los utensilios son a menudo de acero inoxidable, ya que no oscurece los alimentos y pueden limpiarse con facilidad.
Aceros de herramientas
Estos aceros se utilizan para fabricar muchos tipos de herramientas y cabezales de corte y modelado de máquinas empleadas en diversas operaciones de fabricación.
Contienen volframio, molibdeno y otros elementos de aleación, que les proporcionan mayor resistencia, dureza y durabilidad.
El Proceso Productivo del Acero se inicia desde que los altos hornos de la siderurgia empiezan su funcionamiento de forma continua. La materia prima que se va a introducir en el horno se divide en un determinado número de pequeñas cargas que se introducen a intervalos de entre 10 y 15 minutos. La escoria que flota sobre el metal fundido se retira una vez cada dos horas, y el arrabio se sangra cinco veces al día. El aire insuflado en el alto horno se precalienta a una temperatura aproximada de 1.030 ºC.
El calentamiento se realiza en las llamadas estufas, cilindros con estructuras de ladrillo refractario. El ladrillo se calienta durante varias horas quemando gas de alto horno, que son los gases de escape que salen de la parte superior del horno. Después se apaga la llama y se hace pasar el aire a presión por la estufa.
El peso del aire empleado en un alto horno supera el peso total de las demás materias primas. Esencialmente, el CO gaseoso a altas temperaturas tiene una mayor atracción por el oxígeno presente en el mineral de hierro (Fe2O3) que el hierro mismo, de modo que reaccionará con él para liberarlo.
Químicamente entonces, el hierro se ha reducido en el mineral. Mientras tanto, a alta temperatura, la piedra caliza fundida se convierte en cal, la cual se combina con el azufre y otras impurezas.
Esto forma una escoria que flota encima del hierro derretido.
Después de la II Guerra Mundial se introdujo un importante avance en la tecnología de altos hornos: la presurización de los hornos. Estrangulando el flujo de gas de los respiraderos del horno es posible aumentar la presión del interior del horno hasta 1,7 atmósferas o más. La técnica de presurización permite una mejor combustión del coque y una mayor producción de hierro.
En muchos altos hornos puede lograrse un aumento de la producción de un 25%. En instalaciones experimentales también se ha demostrado que la producción se incrementa enriqueciendo el aire con oxígeno. Cada cinco o seis horas, se cuelan desde la parte interior del horno hacia una olla de colada o a un carro de metal caliente, entre 150 a 375 toneladas de arrabio.
Luego se transportan a un horno de fabricación de acero. La escoria flotante sobre el hierro fundido en el horno se drena separadamente. Cualquier escoria o sobrante que salga del horno junto con el metal se elimina antes de llegar al recipiente. A continuación, el contenedor lleno de arrabio se transporta a la fábrica siderúrgica (Acería).
Los altos hornos modernos funcionan en combinación con hornos básicos de oxígeno o convertidores al oxígeno, y a veces con hornos de crisol abierto, más antiguos, como parte de una única planta siderúrgica. En esas plantas, los hornos siderúrgicos se cargan con arrabio.
El metal fundido procedente de diversos altos hornos puede mezclarse en una gran cuchara antes de convertirlo en acero con el fin de minimizar el efecto de posibles irregularidades de alguno de los hornos. El arrabio recién producido contiene demasiado carbono y demasiadas impurezas para ser provechoso. Debe ser refinado, porque esencialmente, el acero es hierro altamente refinado que contiene menos de un 2% de carbono. El hierro recién colado se denomina "arrabio".
El oxígeno ha sido removido, pero aún contiene demasiado carbono (aproximadamente un 4%) y demasiadas impurezas (silicio, azufre, manganeso y fósforo) como para ser útil, para eso debe ser refinado, porque esencialmente el acero es hierro altamente refinado que contiene menos de un 2% de carbono.
La fabricación del acero a partir del arrabio implica no sólo la remoción del carbono para llevarlo al nivel deseado, sino también la remoción o reducción de las impurezas que contiene.
Se pueden emplear varios procesos de fabricación de acero para purificar o refinar el arrabio; es decir, para remover sus impurezas. Cada uno de ellos incluye el proceso básico de oxidación.
Aplicaciones del Acero en la vida cotidiana y en la industria
El acero en sus distintas clases está presente de forma abrumadora en nuestra vida cotidiana en forma de herramientas, utensilios, equipos mecánicos y formando parte de electrodomesticos y maquinaria en general así como en las estructuras de las viviendas que habitamos y en la gran mayoría de los edificios modernos. En este contexto existe la versión moderna de perfiles de acero denominada Metalcon.
Los fabricantes de medios de transporte de mercancías (camiones) y los de maquinarias agricolas son grandes consumidores de acero.
También son grandes consumidores de acero las actividades constructoras de índole ferroviario desde la construcción de infraestructuras viarias así como la fabricación de todo tipo de material rodante.
Otro tanto cabe decir de la industria fabricante de armamento, especialmente la dedicada a construir armamento pesado, vehículos blindados y acorazados.
También consumen mucho acero los grandes astilleros constructores de barcos especialmente petroleros , y gasistas u otros buques cisternas.
Como consumidores destacados de acero cabe citar a los fabricantes de automóviles porque muchos de sus componentes significativos son de acero.
INTEGRANTES
BERMUDEZ AURISMAR CI.19.939.153
MOYA VANESSA CI.19.142.174
SALAZAR EYDER CI.19.939.453
No hay comentarios:
Publicar un comentario