martes, 14 de junio de 2011

Tratamientos Termicos

Fundición: Se denomina fundición al proceso de fabricación de piezas, comúnmente metálicas pero también de plástico, consistente en fundir un material e introducirlo en una cavidad, llamada molde, donde se solidifica. El proceso tradicional es la fundición en arena, por ser ésta un material refractario muy abundante en la naturaleza y que, mezclada con arcilla, adquiere cohesión y moldeabilidad sin perder la permeabilidad que posibilita evacuar los gases del molde al tiempo que se vierte el metal fundido.

La fundición en arena consiste en colar un metal fundido, típicamente aleaciones de hierro, acero, bronce, latón y otros, en un molde de arena, dejarlo solidificar y posteriormente romper el molde para extraer la pieza fundida.

Para la fundición con metales como el hierro o el plomo, que son significativamente más pesados que el molde de arena, la caja de moldeo es a menudo cubierta con una chapa gruesa para prevenir un problema conocido como "flotación del molde", que ocurre cuando la presión del metal empuja la arena por encima de la cavidad del molde, causando que el proceso no se lleve a cabo de forma satisfactoria.


Clasificación de las Fundiciones: Por ser muchos y muy diferentes los factores que hay que tener en cuenta para la calificación y selección de las fundiciones, es difícil establecer una clasificación simple y clara de las mismas. La más antigua y conocida de las clasificaciones establece cuatro grupos: fundición blanca, gris, atruchada y maleable. A estos cuatro grupos se añade en la actualidad otro grupo, el de las funciones especiales, en el que se pueden incluir las fundiciones aleadas que contienen elementos especiales, las fundiciones nodulares, aciculares, inoculadas, etc.


Clasificación de las funciones por su micro estructura: Las fundiciones que se obtienen en los altos hornos y en los cubilotes se pueden clasificar de acuerdo con la microestructura en tres grandes grupos:

 Fundiciones en las que todo el carbono se encuentra combinado, formando cementita y que al romperse presentan fractura de fundición blanca.

 Fundiciones en las que todo el carbono ser encuentra en estado libe, formando grafito. Son fundiciones ferríticas.

 Fundiciones en las que parte del carbono se encuentra combinado formando cementita y parte libre en forma de grafito. A este grupo que es el más importante de todos pertenece la mayoría de las fundiciones que se fabrican y utilizan normalmente, como son las fundiciones grises, atruchadas, perlíticas, etc. Es interesante señalar que en la práctica es muy difícil encontrar fundiciones en las que todo el carbono aparezca en forma de grafito. Con un criterio amplio, también se podrían incluir en este segundo grupo, auque no encajan exactamente en él, las fundiciones maleables, cuya matriz es de ferrita y en las que el grafito se presenta en forma de nódulos. La fundición maleable se obtiene en dos etapas: primero se fabrica la fundición blancas y hierro nodular.


Fundiciones Martensíticas Resistentes al Desgaste:

Para la fabricación de piezas que deban tener gran resistencia al desgaste, o que exijan muy altas durezas o deban sufrir grandes presiones, se emplean fundiciones martensíticas al níquel y al manganeso. Las fundiciones martensíticas más utilizadas son las blancas. Sin embargo, también se fabricaban fundiciones martensíticas que son de usos mas restringidos.

Fundiciones martensíticas blancas al níquel:
Estas fundiciones suelen contener 4.5% de níquel, 2% de cromo, y bajo silicio, 0.50%, alcanzándose con ellas durezas variables de 500 a 700 Brinell. En América estas fundiciones martensíticas al níquel que son fundiciones blancas son conocidas con la denominación Ni-hard.

Fundiciones martensíticas grises:
Estas fundiciones un bruto de colada estructura martensítica por simple enfriamiento en arena. Suelen conocerse a veces con la denominación de fundiciones autotemplables por la elevada dureza 400 a 45º Brinell que adquieren directamente de la colada sin ningún tratamiento. No pueden ser mecanizadas con herramientas ordinarias.


FUNDICIONES ALEADAS CON ALUMINIO:

Recientemente se han comenzado a fabricar y emplear ciertas fundiciones con aluminio. Sin embargo, en la actualidad todavía su empleo es muy limitado, porque su fabricación es muy dificil. La adición de cantidades de aluminio superiores al 6.5% hace desaparecer el grafito en las fundiciones y hace que aparezca la matriz formada por ferrita y carburos complejos. Esta estructura ferrítica como la de las fundiciones al silicio es muy inoxidable y refractaria al calor.

Fundiciones de Baja y Media Aleacion:

Estas fundiciones suelen contener cantidades de níquel, cromo, molibdeno y cobre en porcentajes generalmente inferiores al 1.5%. En estas fundiciones de gran resistencia, es frecuente que los elementos aleados estén en la proporción de una parte de cromo y dos o tres partes de níquel. El cobre y el molibdeno, en general, suelen encontrarse en cantidades relativamente pequeñas, empleándose estos elementos unas veces solos y otras con níquel o cromo, o con ambos a la vez. En ocasiones mucho menos frecuentes, estas fundiciones contienen también pequeñas cantidades de titanio y vanadio, que son añadidos principalmente para conseguir disminuir el tamaño de las laminas de grafito o para afinarar la matriz, y para mejorar también la resistencia al desgaste.

Fundiciones de Alta Resistencia a la Tracción:

En este grupo se incluyen una gran variedad de fundiciones de composiciones muy diversas y resistencia a la tracción, variables de 25 a 50 kg/mm2 .A este grupo pertenecen ciertas fundiciones al níquel, fundiciones al cromo, al cromo-níquel, al cobre etc.
En estas fundiciones, una de las ventajas mas importantes del empleo de los elementos de aleación, es que con ellos se evita la formación de grandes laminas de grafito y se aumenta la resistencia de la matriz.
También es importante señalar que la presencia de esos elementos reducen la susceptibilidad de las fundiciones a las variaciones de sección. Es decir, se consiguen que las propiedades sean más constantes en piezas de diferentes espesores. Además, la matriz de las fundiciones aleadas tienen más resistencia y dureza que la matriz de las fundiciones ordinarias.
Como es tan grande el numero de fundiciones que pertenecen a este grupo y tan numerosas y particulares sus aplicaciones, es difícil señalar las características propias de cada composición. En algunos aspectos puede decirse que en ellas la influencia de los elementos de aleación es la misma que en la de los aceros.

Fundiciones de Alta Dureza con 1 a 3% de Cromo:
Empleando contenidos de cromo variables de 1 a 2% se obtienen fundiciones blancas de dureza muy elevada. Estas fundiciones se emplean bastante poco, casi exclusivamente en casos en que interesa gran resistencia al desgaste y a la abrasión, y no importa mucho la tenacidad del material. Para la fabricación de placas de blindaje, piezas de rozamiento, zapatas de freno, gúias de rodadura, son muy empleadas fundiciones blancas de 2 a 3% de cromo, con durezas variables 400 a 450 Brinell.


Etapas del proceso:

Diseño del moldeo:

La fundición en arena requiere un modelo a tamaño natural de madera, plástico y metales que define la forma externa de la pieza que se pretende reproducir y que formará la cavidad interna en el molde.
En lo que atañe a los materiales empleados para la construcción del modelo, se puede emplear desde madera o plásticos como el uretano y el poliestireno expandido (EPS) hasta metales como el aluminio o el hierro fundido.Para el diseño del modelo se debe tener en cuenta una serie de medidas derivadas de la naturaleza del proceso de fundición:

* Debe ser ligeramente más grande que la pieza final, ya que se debe tener en cuenta la contracción de la misma una vez se haya enfriado a temperatura ambiente. El porcentaje de reducción depende del material empleado para la fundición.
A esta dimensión se debe dar una sobre medida en los casos en el que se dé un proceso adicional de maquinado o acabado por arranque de viruta.

* Las superficies del modelo deberán respetar unos ángulos mínimos con la dirección de des moldeo (la dirección en la que se extraerá el modelo), con objeto de no dañar el molde de arena durante su extracción. Este ángulo se denomina ángulo de salida. Se recomiendan ángulos entre 0,5º y 2º.

* Incluir todos los canales de alimentación y mazarotas necesarios para el llenado del molde con el metal fundido.

* Si es necesario incluirá portadas, que son prolongaciones que sirven para la colocación del macho.

Los moldes, generalmente, se encuentran divididos en dos partes, la parte superior denominada cope y la parte inferior denominada draga que se corresponden a sendas partes del molde que es necesario fabricar.





Tipos de Moldes:

Los moldes se pueden distinguir:

* Moldes de arena verde: estos moldes contienen arena húmeda.

* Moldes de arena fría: usa aglutinantes orgánicos e inorgánicos para fortalecer el molde.

Estos moldes no son cocidos en hornos y tienen como ventaja que son más precisos dimensionalmente pero también más caros que los moldes de arena verde.

* Moldes no horneados: estos moldes no necesitan ser cocidos debido a sus aglutinantes (mezcla de arena y resina). Las aleaciones metálicas que típicamente se utilizan con estos moldes son el latón, el hierro y el aluminio.

Las etapas que se diferencian en la fabricación de una pieza metálica por fundición en arena comprende:
* Compactación de la arena alrededor del modelo en la caja de moldeo. Para ello primeramente se coloca cada semi modelo en una tabla, dando lugar a las llamadas tablas modelo, que garantizan que posteriormente ambas partes del molde encajarán perfectamente.

Actualmente se realiza el llamado moldeo mecánico, consistente en la compactación de la arena por medios automáticos, generalmente mediante pistones (uno o varios) hidráulicos o neumáticos.

* Colocación del macho o corazones. Si la pieza que se quiere fabricar es hueca, será necesario disponer machos, también llamados corazones que eviten que el metal fundido rellene dichas oquedades. Los machos se elaboran con arenas especiales debido a que deben ser más resistentes que el molde, ya que es necesario manipularlos para su colocación en el molde. Una vez colocado, se juntan ambas caras del molde y se sujetan. Siempre que sea posible, se debe prescindir del uso de estos corazones ya que aumentan el tiempo para la fabricación de una pieza y también su coste.

* Colada. Vertido del material fundido. La entrada del metal fundido hacia la cavidad del molde se realiza a través de la copa o bebedero de colada y varios canales de alimentación. Estos serán eliminados una vez solidifique la pieza. Los gases y vapores generados durante el proceso son eliminados a través de la arena permeable.

* Enfriamiento y solidificación. Esta etapa es crítica de todo el proceso, ya que un enfriamiento excesivamente rápido puede provocar tensiones mecánicas en la pieza, e incluso la aparición de grietas, mientras que si es demasiado lento disminuye la productividad. Además un enfriamiento desigual provoca diferencias de dureza en la pieza. Para controlar la solidificación de la estructura metálica, es posible localizar placas metálicas enfriadas en el molde. También se puede utilizar estas placas metálicas para promover una solidificación direccional. Además, para aumentar la dureza de la pieza que se va a fabricar se pueden aplicar tratamientos térmicos o tratamientos de compresión.

* Des moldeo. Rotura del molde y extracción de la pieza. En el des moldeo también debe retirarse la arena del macho. Toda esta arena se recicla para la construcción de nuevos moldes.

* Desbarbado. Consiste en la eliminación de los conductos de alimentación, mazarota y rebarbas procedentes de la junta de ambas caras del molde.

* Acabado y limpieza de los restos de arena adheridos. Posteriormente la pieza puede requerir mecanizado, tratamiento térmico, etc.



Cianuracion:

La cianuración es un tratamiento termoquímico que se da a los aceros. Cuando se quiere obtener una superficie dura y resistente al desgaste, esto se logra empleando un baño de cianuro fundido, la cianuración se puede considerar como un tratamiento intermedio entre la cementación y la nitruración ya que el endurecimiento se consigue por la acción combinada del carbono y el nitrógeno a una temperatura determinada.


Como se realiza el tratamiento termoquímico:

La cianuración se efectúa a una temperatura justamente por encima de la critica del corazón de la pieza, se introduce la pieza en una solución que generalmente consta de cianuro de sodio con cloruro de sodio y carbonato de sodio, el enfriamiento se da directamente por inmersión al salir del baño de cianuro con esto se obtiene una profundidad de superficie templada uniforme de unos 0.25 mm en un tiempo de una hora.

Hierro Ductil:

El hierro dúctil o nodular se obtiene mediante la introducción controlada de magnesio en el hierro fundido, y bajas proporciones de azufre y fósforo.
Se obtiene de este modo una extraordinaria modificación en la micro-estructura del metal, ya que el carbono se deposita en la matriz ferrítica en forma de esferas al contrario de lo que ocurre en el hierro gris, en el que el carbono toma la forma de láminas.

El resultado de este importantísimo cambio de estructura, es un hierro mucho más fuerte, resistente y elástico.

. Resistencia a la compresión.
. Aptitud al moldeo.
. Resistencia a la abrasión.
. Maquinabilidad.
. Resistencia a la fatiga.

Ventajas del Hierro Dúctil :

Una de las ventajas más importantes que aporta este material es la reducción de peso en las piezas, lo que permite disminuir las cuadrillas de instalación y aligerar el transporte.

Para seguir enumerando ventajas, podríamos mencionar un apreciable aumento de la resistencia a la tracción (420 N/mm2) respecto de las ya elevadas de las fundiciones grises (180 a 200 N/mm2); también la capacidad de alargamiento que rebasa ampliamente el 5%.

Por ello este tipo de fundición, que sigue conservando las excelentes propiedades de resistencia a la corrosión de las fundiciones de hierro, se comporta desde un punto de vista mecánico, prácticamente como el acero.
En resumen, aún poseyendo el mismo contenido de carbono que la fundición gris, la fundición dúctil añade tres características importantes:

. Resistencia a la tracción y a los choques.
. Alargamiento importante.
. Alto límite elástico.




INTEGRANTES:

AURISMAR BERMUDEZ CI.19.939.153
VANESSA MOYA CI.19.142.174
EYDER SALAZAR CI. 19.939.453
ALLANT GUSTAVO GARCIA CI.18.593.608

miércoles, 25 de mayo de 2011

El ACERO

La industria siderúrgica venezolana se administra mediante la gestión del Estado a través de la planta de la empresa Siderúrgica del Orinoco (SIDOR), localizada en el Nordeste del estado Bolívar. De titularidad privada es la compañía Siderúrgica Venezolana (SIVENSA), en el Distrito Federal y en el estado Bolívar, así como también la Siderúrgica del Turbio (SIDETUR), ésta en el estado Lara.
La producción de acero comenzó en Venezuela en 1950, cuando la empresa SIVENSA la iniciara partiendo de la chatarra. La actividad económica de mayor importancia en el nordeste del estado Bolívar se relaciona con la explotación del mineral de hierro; bajo el impulso de esta actividad surgió Ciudad Piar. De igual forma, la pujante importancia de esta actividad requirió de un puerto para el comercio internacional, el cual se estableció el 8 de febrero de 1952 en la confluencia de los ríos Orinoco y Caroní, con el nombre de Puerto Ordaz, que junto con el de San Félix dieron origen posteriormente a Ciudad Guayana. En fechas más recientes, en 1964, la empresa SIDOR comenzó su producción.


A partir de 1975, el Estado asumió la propiedad de la industria del hierro a través de la Corporación Venezolana de Guayana (CVG), a la cual se adscribió la empresa estatal Ferrominera del Orinoco que reemplazó a las concesionarias que hasta entonces venían controlando la explotación y la comercialización del mineral de hierro.

El acero es el más popular de las aleaciones, es la combinación entre un metal (el hierro) y un no metal (el carbono), que conserva las características metálicas del primero, pero con propiedades notablemente mejoradas gracias a la adición del segundo y de otros elementos metálicos y no metálicos. De tal forma no se debe confundir el hierro con el acero, dado que el hierro es un metal en estado puro al que se le mejoran sus propiedades físico-químicas con la adición de carbono y demás elementos. La definición anterior, sin embargo, se circunscribe a los aceros al carbono en los que este último es el único aleante o los demás presentes lo están en cantidades muy pequeñas. De hecho existen multitud de tipos de acero con composiciones muy diversas que reciben denominaciones específicas en virtud, ya sea de loselementos qu predominan en su composición (aceros alsilicio), de su susceptibilidad a ciertos tratamientos (aceros de cementación), de alguna característica potenciada (aceros inoxidables) e incluso en función de su uso (aceros estructurales). Usualmente estas aleaciones de hierro se engloban bajo la denominación genérica de aceros especiales, razón por la que aquí se ha adoptado la definición de los comunes o "al carbono" que además de ser los primeros fabricados y los más empleados, sirvieron de base para los demás. Esta gran variedad de aceros llevó a Siemens a definir el acero como «un compuesto de hierro y otra sustancia que incrementa su resistencia». Por la variedad ya apuntada y por su disponibilidad —sus dos elementos primordiales abundan en la naturaleza facilitando su producción en cantidades industriales los aceros son las aleaciones más utilizadas en la construcción de maquinaria, herramientas, edificios y obras públicas, habiendo contribuido al alto nivel de desarrollo tecnológico de las sociedades industrializadas. Sin embargo, en ciertos sectores, como la construcción aeronáutica, el acero apenas se utiliza debido a que es un material muy denso, casi tres veces más denso que elaluminio (7.850 kg/m³ de densidad frente a los 2.700 kg/m³ del aluminio).

Entre sus Características Principales

Posee una alta conductividad eléctrica.

La corrosión es la mayor desventaja de los aceros ya que el hierro se oxida con suma facilidad incrementando su volumen y provocando grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. Tradicionalmente los aceros se han venido protegiendo mediante ratamientos superficiales diversos. Si bien existen aleaciones con resistencia a la corrosión mejorada como los aceros de construcción «corten» aptos para intemperie (en ciertos ambientes) o los aceros inoxidables.

Se utiliza para la fabricación de imanes permanentes artificiales, ya que una pieza de acero imantada no pierde su imantación si no se la calienta hasta cierta temperatura. La magnetización artificial se hace por contacto, inducción o mediante procedimientos eléctricos.

Un aumento de la temperatura en un elemento de acero provoca un aumento en la longitud del mismo.

Su Clasificacion se basa en los diferentes tipos de acero los cuales se agrupan en cinco clases principales: aceros al carbono, aceros aleados, aceros de baja aleación ultra resistentes, aceros inoxidables y aceros de herramientas.

Aceros al carbono

Más del 90% de todos los aceros son aceros al carbono. Estos aceros contienen diversas cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de silicio y el 0,60% de cobre.

Entre los productos fabricados con aceros al carbono figuran máquinas, carrocerías de automóvil, la mayor parte de las estructuras de construcción de acero, cascos de buques, somieres y horquillas o pasadores para el pelo.


Aceros aleados

Estos aceros contienen una proporción determinada de vanadio, molibdeno y otros elementos, además de cantidades mayores de manganeso, silicio y cobre que los aceros al carbono normales.

Estos aceros se emplean, por ejemplo, para fabricar engranajes y ejes de motores, patines o cuchillos de corte.


Aceros de baja aleación ultra resistentes

Esta familia es la más reciente de las cinco grandes clases de acero. Los aceros de baja aleación son más baratos que los aceros aleados convencionales ya que contienen cantidades menores de los costosos elementos de aleación.

Sin embargo, reciben un tratamiento especial que les da una resistencia mucho mayor que la del acero al carbono. Por ejemplo, los vagones de mercancías fabricados con aceros de baja aleación pueden transportar cargas más grandes porque sus paredes son más delgadas que lo que sería necesario en caso de emplear acero al carbono.
Además, como los vagones de acero de baja aleación pesan menos, las cargas pueden ser más pesadas. En la actualidad se construyen muchos edificios con estructuras de aceros de baja aleación.

Las vigas pueden ser más delgadas sin disminuir su resistencia, logrando un mayor espacio interior en los edificios.


Aceros inoxidables

Los aceros inoxidables contienen cromo, níquel y otros elementos de aleación, que los mantienen brillantes y resistentes a la herrumbre y oxidación a pesar de la acción de la humedad o de ácidos y gases corrosivos. Algunos aceros inoxidables son muy duros; otros son muy resistentes y mantienen esa resistencia durante largos periodos a temperaturas extremas.

Debido a sus superficies brillantes, en arquitectura se emplean muchas veces con fines decorativos. El acero inoxidable se utiliza para las tuberías y tanques de refinerías de petróleo o plantas químicas, para los fuselajes de los aviones o para cápsulas espaciales.

También se usa para fabricar instrumentos y equipos quirúrgicos, o para fijar o sustituir huesos rotos, ya que resiste a la acción de los fluidos corporales. En cocinas y zonas de preparación de alimentos los utensilios son a menudo de acero inoxidable, ya que no oscurece los alimentos y pueden limpiarse con facilidad.


Aceros de herramientas

Estos aceros se utilizan para fabricar muchos tipos de herramientas y cabezales de corte y modelado de máquinas empleadas en diversas operaciones de fabricación.

Contienen volframio, molibdeno y otros elementos de aleación, que les proporcionan mayor resistencia, dureza y durabilidad.


El Proceso Productivo del Acero se inicia desde que los altos hornos de la siderurgia empiezan su funcionamiento de forma continua. La materia prima que se va a introducir en el horno se divide en un determinado número de pequeñas cargas que se introducen a intervalos de entre 10 y 15 minutos. La escoria que flota sobre el metal fundido se retira una vez cada dos horas, y el arrabio se sangra cinco veces al día. El aire insuflado en el alto horno se precalienta a una temperatura aproximada de 1.030 ºC.


El calentamiento se realiza en las llamadas estufas, cilindros con estructuras de ladrillo refractario. El ladrillo se calienta durante varias horas quemando gas de alto horno, que son los gases de escape que salen de la parte superior del horno. Después se apaga la llama y se hace pasar el aire a presión por la estufa.

El peso del aire empleado en un alto horno supera el peso total de las demás materias primas. Esencialmente, el CO gaseoso a altas temperaturas tiene una mayor atracción por el oxígeno presente en el mineral de hierro (Fe2O3) que el hierro mismo, de modo que reaccionará con él para liberarlo.

Químicamente entonces, el hierro se ha reducido en el mineral. Mientras tanto, a alta temperatura, la piedra caliza fundida se convierte en cal, la cual se combina con el azufre y otras impurezas.

Esto forma una escoria que flota encima del hierro derretido.

Después de la II Guerra Mundial se introdujo un importante avance en la tecnología de altos hornos: la presurización de los hornos. Estrangulando el flujo de gas de los respiraderos del horno es posible aumentar la presión del interior del horno hasta 1,7 atmósferas o más. La técnica de presurización permite una mejor combustión del coque y una mayor producción de hierro.

En muchos altos hornos puede lograrse un aumento de la producción de un 25%. En instalaciones experimentales también se ha demostrado que la producción se incrementa enriqueciendo el aire con oxígeno. Cada cinco o seis horas, se cuelan desde la parte interior del horno hacia una olla de colada o a un carro de metal caliente, entre 150 a 375 toneladas de arrabio.

Luego se transportan a un horno de fabricación de acero. La escoria flotante sobre el hierro fundido en el horno se drena separadamente. Cualquier escoria o sobrante que salga del horno junto con el metal se elimina antes de llegar al recipiente. A continuación, el contenedor lleno de arrabio se transporta a la fábrica siderúrgica (Acería).


Los altos hornos modernos funcionan en combinación con hornos básicos de oxígeno o convertidores al oxígeno, y a veces con hornos de crisol abierto, más antiguos, como parte de una única planta siderúrgica. En esas plantas, los hornos siderúrgicos se cargan con arrabio.

El metal fundido procedente de diversos altos hornos puede mezclarse en una gran cuchara antes de convertirlo en acero con el fin de minimizar el efecto de posibles irregularidades de alguno de los hornos. El arrabio recién producido contiene demasiado carbono y demasiadas impurezas para ser provechoso. Debe ser refinado, porque esencialmente, el acero es hierro altamente refinado que contiene menos de un 2% de carbono. El hierro recién colado se denomina "arrabio".

El oxígeno ha sido removido, pero aún contiene demasiado carbono (aproximadamente un 4%) y demasiadas impurezas (silicio, azufre, manganeso y fósforo) como para ser útil, para eso debe ser refinado, porque esencialmente el acero es hierro altamente refinado que contiene menos de un 2% de carbono.

La fabricación del acero a partir del arrabio implica no sólo la remoción del carbono para llevarlo al nivel deseado, sino también la remoción o reducción de las impurezas que contiene.
Se pueden emplear varios procesos de fabricación de acero para purificar o refinar el arrabio; es decir, para remover sus impurezas. Cada uno de ellos incluye el proceso básico de oxidación.


Aplicaciones del Acero en la vida cotidiana y en la industria

El acero en sus distintas clases está presente de forma abrumadora en nuestra vida cotidiana en forma de herramientas, utensilios, equipos mecánicos y formando parte de electrodomesticos y maquinaria en general así como en las estructuras de las viviendas que habitamos y en la gran mayoría de los edificios modernos. En este contexto existe la versión moderna de perfiles de acero denominada Metalcon.


Los fabricantes de medios de transporte de mercancías (camiones) y los de maquinarias agricolas son grandes consumidores de acero.


También son grandes consumidores de acero las actividades constructoras de índole ferroviario desde la construcción de infraestructuras viarias así como la fabricación de todo tipo de material rodante.

Otro tanto cabe decir de la industria fabricante de armamento, especialmente la dedicada a construir armamento pesado, vehículos blindados y acorazados.


También consumen mucho acero los grandes astilleros constructores de barcos especialmente petroleros , y gasistas u otros buques cisternas.

Como consumidores destacados de acero cabe citar a los fabricantes de automóviles porque muchos de sus componentes significativos son de acero.


INTEGRANTES
BERMUDEZ AURISMAR CI.19.939.153
MOYA VANESSA CI.19.142.174
SALAZAR EYDER CI.19.939.453